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INITIAL ASYMPTOTE TO THE SOLUTION
OF THE PROBLEM OF DROPLET INCIDENCE
ON A PLANE

A. A. Korobkin UDC 532.6 :532.581

The initial stage of collision of a spherical droplet on a solid plane is considered. 1t is assumed that the
droplet liquid is ideal and incompressible, and that surface tension and external mass forces are absent.

This problem is closely related to that of entry of a blunt body into a liquid, which was first considered in
[1]. The method for calculation of the resistive forces, developed in [1], is based on the assumption that the
velocity distribution on the free surface at each moment is the same as that obtained directly after collision
of a floating plate of the same dimensions.

These problems have the following unique features: 1) the flow region Q; is unknown; 2) the contact line
between free liquid surface and the solid must be determined at the boundary of the flow region; 3) singularities.
may appear in the solution on this line.

A new approach to problems of this kind is the introduction of Lagrangian coordinates [2, 3], in which the
flow region is fixed.

1. At time t=0 a liquid sphere of radius a is tangent upon a solid plane, which moves along the z axis at
velocity v. We must find the liquid motion which then occurs. In the space formed by Lagrangian Cartesian
coordinates ¢, i, { the region occupied by the liquid is known, being a sphere of radius ¢ with center at the
origin. We denote this region by ;. The variables x, y, z denote the corresponding Euler coordinates, I is
the free surface of the liquid, and X is the contact spot between droplet and solid plane. The Euler equations,
written in Lagrangian coordinates, have the form [3]

Myxy - % Vip =0, detM,=1in Q (1.1)

with boundary conditions p{r =0, z¢|y = v and initial conditions X|t=9= & Xg|t=0, Where x = (z, ¥, 2); § = (§, ,
0); My=0(x)/3(&); Mg is the matrix conjugate to M, and p is the pressure. The problem is a complex one be-
cause of its nonlinearity and the existence of the unknown line on the sphere boundary 82, dividing T" and Z.

2. We will linearize Eq. (1.1) for the initial rest state, keeping terms of zeroth- and first-order small-
ness in displacement. For the linearized problem we can introduce a displacement potential =%, 7, ¢, t),
which in view of the continuity equation, will be a function harmonic in €;. From the momentum equationfollows
that

p = —yDy, 2.1)
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thus relating the pressure and the displacement potential. With consideration of this expression, after double
integration over t and use of the initial conditions, the condition on T' may be written as ®|=0. The nonflow
condition takes on the form &, |s=-v.

We introduce Lagrangian spherical coordinates p, 6, ¢ suchthat § = psin@cosg, n =psinbsing, { =
peosB, 0<CO<Cm, 0<Co<C2n. The problem formulation is invariant relative to rotation about the z axis,
permitting search for a function ® which is independent of ¢. Then in Lagrangian coordinates the contact line
between the liquid free surface and the solid wall will be specified by the expression 8=6,t), p =a, where 6;)
must be determined in the course of solving the boundary problem for . We write the nonflow condition in
spherical coordinates and integrate it over t:

(0®/p)cos 8 + (1/a)(0D/30)sin 6 = —vt 4 a(l — cos 8), p = a,
0 < 6 < 8,(0).

We divide the left and right sides of the expression by cos 8 and express the right side in terms of first and
second order Legendre polynomials:

oD 1 oD

T S5 tef= (%--—— Zz;t) P, (cos 8) 4- (vt— %) P, (cos 6) + O (¢62),

p=a, 0<C0<0,(2).

’

The term a"iéetan 6 is quadratically small in comparison to <I>p, since as t —0 6yt), and consequently 6 also
vanishes, so that within the framework of linear theory it may be dropped together with O¢ 9%). As a result,
we obtain a mixed boundary problem for a function harmonic at p<a:

AD =0, p<<a, D=0, p=a, 0) <8< m, 2.2)
@p = (a/2 — 2vt)Pi(cos B) + (vt — a/2)Py(cos B), p = a, 0 << 0 << O,(t).
Moreover, we must specify that particles of the free surface cannot penetrate beyond the solid wall. This
limitation can be written as an inequality
Dy < (@ —vt)/cos 8 — a, p = a, B,(t) < 0 < w/2, 2.3)

which must be verified after solution of the problem.

We introduce the dimensionless variables r, 7 and a new function u(r, 0, 1) = (2/¢®)®(ar, 6, av/2v) — (1 —
2t) r Pycos 8) — (1/2)(v — 1)r®Py(cos 0), r = p/a, T = 2vt/a. From Eq. (2.2) it follows that
Au=0,r<<1, u=(2v — 1)P,(cos 8) + (1/2)(1—1)P,(cos 8) = #(8, 1), ©.4)
r=106,<0<n, u=0,r=1, 0<0<80,

‘We will seek a solution of this problem in the form of a series in Legendre polynomials
u(r, 8, 1) = 3 4, (x)r"Py (cosb). 2.5)
n=g

Using the boundary conditions, we arrive at:
ﬂg‘,oAn (t) Ppcos®) = f(8, 1), 6, <0<, @.6)

oo

X A, (7) Pulcos0) =0, 0<{0<8,
n=g

which are termed paired series [4]. E will be conveneint to introduce new coefficient Cn=2nAn/ @n+1), n=1
and Cy =0, and the numbers g, =—1/2n, n=1, and g;, any number. The paired series written in terms of Cp,
g, take on a form which is termed standard:

-~ 1
> (n + 7) CrPr(cos0) =0, 0<<O< 8 2.7a)
n=0

Ea (1 — gn) CnPn(cos8) = (8, 1) — 4, (1), 0, <O <. @2.7b)

If C, (and thus Ay) is determined by solution of Eq. 2.7), then the formal solution of Eq. (2.4) will be given by
the series of Eq. (2.5). System (2.7) can be reduced to a regular Fredholm integral equation by a method based
on the Meler —Dirichlet integral representation of Legendre polynomials

1
T sin (n—!—-) z
2 2
T — -—————————————*—d C
Pa (cos ) n b( V2 {cos § — cos ) *
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and expansions of certain discontinuous functions in series in Legendre polynomials [4]:

\ 0 0t << m, (2.8)
1 1Py (cos0) = [2(cos®—cost)] '3, 0<O<t<m;

lol

S

__ism

o _1/-

Z ( )tP (cos6) = {[2(cost—c059)] I<t< b <, 2.9)

O< o<t
We take

13

Cnlt) = j‘ ¢ (y, ) sin <n - %) ydy, 2.10)
eo(T)

where ¢ (x, 7} is a new unknown function, which is assumed to be continuously differentiable with respect to x
and continually differentiable twice with respect to r. If we now substitute Eq. 2.10) into Eq. (2.7a), by using
Eq. (2.9) we obtain an identity [4]. Then, substituting Eq. 2.10) in Eq. (2.7b) we obtain a Fredholm equation
for o x,7)

(7 (8, 1) — 4, (7)) sin 6480

n
2 d
(P(‘x T —‘—‘é‘lf(x, y)(p(y’ __n—?i—xj‘ 1/2(005.1:—-0056) ? (2.11)
0

B <z,

the integrand of which has the form

Kz, y) = 22?‘ gnsin (n -+ ?)xsin (n -+ %) .
n=0

-

We calculate the right side of Eq. {2.11) and write the Fredholm equation in final form, using the condition
C() (7') =0:

LA 4, . 3 . 1
Q(z, 1)+ 72 —sin (n 4+ —;—) x\ o (y,7) sm(n 4 ?) ydy =

n=1 8

= % ( ! ; L 24, (-u)) sin{— (1—21) sm——-+ —(r 1) sin 52_x = Y(z, 7).

';lltc

The coefficient Ayfr) is determined after solution of this equation from the condition Cy=0.

3. We will determine the motion of the free surface. Since ®{=0, only the normal component of the
displacement vector tbpl 1 will be nonzero:

D= (&/2u, + (@/2 — 20t)P (cos 0) + (vt — a/2)P,(cos 0).
Bt follows from Eq. (2.5) that

U [o = 3 ndy (1) Pa(cos 6) — Z {n+ %) Ca(©) Palcos).
n=g n=g
Within this expression we substitute the expression for Cy @) in terms of ¢ (x, 7)-and use the discontinuous
series 2.8), 2.9):

o oo

u,lp=2 (n+§ jcp(y, r)sm(n—}— )yPn(cose)dy lf@(y, 1:)2 P, (cos9) dcos (n—f—é—)y—

e % % o

+ 57 (2 c0s (n + %) yPx (cos 6)) ol dy =09 (Gov(r), ) E cos (n + %) 8,Pn (cos 6)
o \n=9 n=g

’

A g 9, (¥, 7) dy
]/2 cos By——cos ) ' V2 (cosy —cos )
fp

From condition (2.3) we obtain an equation for determination of 6,¢r):

¢(8,7). 7) = O. : 3.1)
The pressure is determined with Eq. 2.1). Using the relationships ®(p, 4, t) and u(r, 8, 7), we write
= —2yugi, 9, 1), 0<C 0 <<COBy(1). (3.2)



Applying Eqs. (2.8), (2.9), after various transformations we obtain

P (®, 7) 0, (%) 1N 1 Lo . o ,

lg mo o ety 2000 1v 4 ) . . A o

U (1, 6, Ty e Vm e, = ";1 ~ [Py (cos 8) — 2, (cos H‘,)]b g (2, T) sin (\n ; :}xax, 3.3)
i

the series in which converges absolutely, since Py (cos 0)=O(n"1/2) as n—=, The force of the droplet collision
with the plate is determined by integrating the pressure over the contact spot area
By
F=2na*{ p(1, 8, 7)sin0dd

0

or, using Egs. (3.2), (3.3), we have

F = 8rypa*iiey (z, T) Bé (1) lxzeo(.‘) sin -%0_ + (3.4)
co 7T
+ byar N ( J [Py (cos By) — Py, (cos 6)] sin ede) (5 grelzm)sinfn 4+ +) ;cdx).
n==1
&)

4. We will find an approximate solution of integral equation 2.11). We expand the unknown function
@ X, T), the dimensionless time 7, the coefficient Ajfr ) and ¥ &, 7) in series in By
e(x 1) =0 (@) + 0 (@) 6+ ..., P (2, 7) = Yo (@) + Py ()8, 4 ..., ' @.1)
Ay (v) = by =+ b8 + befo + - - .5 T = .07 + as8; +
‘We assume that the function ¢ x, 7) is analytic over the interval [0, 7]. Then Eq. 2.11) can be written in the

following manner:
8y

14
1
9@ —L{K@new r)dyj——j’K(x DOV =b@ 1), << @.2)
]
'We expand the integrand K, y) using Taylor's formula for y € [0, 6y):
Kz, y) = ——sm 5 +( sin 3 ZIn (25in—§-) — %—ctg%cosg + -21~sin % %xcosm) y -+ O (yd.

The equation for determination of ¢ ;) follows from Eq. €.11) at 7 =0,
’ 14
00—+ | K@ )00 ) dy = 1 (@),
]

‘We seek a solution of this equation in the form

9o (2) = 2, otnsin (n + ).z

i can be shown that

_ __1____2_)1: 4 3z 4 . bz
a0 = o) sin g — g sin - gz sin .

Substituting Eq. (4.1) in integral equation (4.2) and equating coefficients of identical powers of §,, we obtain an
equation for determination of ¢, &j. Thus, the equation for o, ) has the form

00—~ K@y awa =,
0

This equation is solved just like the one for ¢, (x):
@1(z) = —(2/m)by sin (2/2).

In the equation for ¢, &) a contribution is produced by
8y

% 5’ K (z, y) 90 (v) dy

Using the expansion of Kz, y) at {y] < §; and the form of ¢,(x), we obtain

(% 2 1 1 .3z 44y . 5z
(P'“'(x)_"(m an*iﬁn_anbJSan + Bn SmT_ fa ST




From the condition Cy(r) =0 we define the first terms in the expansion in 6, of the coefficient A¢r):
A () = (@ —1)/4+0(8)).

From this it follows that
8y e

[
Foetyay =002, | yoo@)dy=0(8), ¢1(x)=0.

0

Using these relationships, we write the equation for determination of ¢; )

00—+ K (2 1) 000 dy = 4, @)

The solutien of this eguation has the form
a 2 . 8z, . 3 da, | 5
P, (x) = (57%*71‘53)51“%—1—373 sm~2’f-—- —5n—351n~2£.
The desired function ¢ &, 7) can be written in the form

4 . 3 4 .
9 (2, 1) = 5= (20— 1) sin 5= + == (1L — ) sin 22 40 (8).

Now knowing @4{x), we can refine the value of Ayfr):

4y (0) =71 +0(8).

From Eq. (3.1}, we define §,¢):
8, (1) = V% T4+ 0(z*?).

5. Using Egs. (3.2), (3.3) we define the pressure on the contact spot:

P 3 i 40 (1). (6.1)

- Y 3a ],fcose~cosﬁo
With Eq. (3.4) we than calculate the collision force
= G}/ 3ya®23 212+ O(1). (5.2)

Using Eqs. 2.1), (6.1) we find that the major term in the asymptote of ® is not positive on the contact spot as
t —~0, Physically, this means that particles lying on the contact spot flow away from the point ¢ = 0, p =a,

We now apply a Kelvin transform to the function &(p, 4, t) which is harmonic within the sphere. Then
the function
(D (P, 81 t)1 p <~ d,:

w(p, 0, t)=I 2
l_ g—q)(-ap—v 97 t)i p}a

will be harmonic over all space with the surface T being a special case. On one gide of = we have the Neumann
condition, and on the other, a condition of the third sort:
Wy wia = (@ —vt)lcos® —a, p=a+0, 0O <O: 2y,
wo={a — vt)cos® —a, p=a—0, 0O <<O: Z_.
We turn to a new function q =&w/8p, with q being harmonic over all space and equal to zero at infinity. By the
intensified principle of the maximum, g cannot achieve its maximum value within the region of its definition.

Therefore

qgmaX(maxq, maxq)’ p=a, <O m.
z_ I,

On r. max q =vt/2, whileons, maxq =vt/2 +max @/z). Since ®| 5 =<0, then q=vt/2 atp=a, ;<8 =m. This
inequality may be intensified to

Flp=q << (@ — vH)/cos 0 — a, 0,<<8 < /2.

Thus, the solution constructed satisfies condition 2.3).
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Note 1. It is known that the pressure p is a subharmonic {unction within 2y {3}, Since p20 onTand p=0
on I' by definition, consequently p=0 within &, i.e., there are no rarefaction zones in the {low,

Note 2, Due to the axial symmetry of the problem, the center of the mass can move only along the z
axis upon collision, and its motion can be determined from Newton's law:

md*Zy'd? = F{1),

where m is the droplet mass, Zg is the displacement of the dror/ﬂet ‘s center of mass along the z axis, and F¢)
is the force specified by Eq. (5.2). & can be seen that Z3=0¢%%) as t -0, i.e., the motion of the center of
mass is negligibly small in the initial stage of collision.

Note 3. By applying an additional condition (=0 on I}, the problem of Egs. 2.2), {2.3) can be formulated
as one with single-sided inequalities:
* #
w, —g* =0
Aw* =0in Q,, {w* =0 on 69,
w* (wp — g%) =0

where w* = —&, g* € Hl/? ). We will seek a solution of this problem within H' ;). We define the set U;=
(vl = HYQ,), v>>0 on 52}, the continuous liner function

L{)= s‘ givdl’, ve HY(Q)
8

%

and the bilinear, symmetric, continuous form, coercive on H! &)

m (v = | yuyed?, v, ue H(Q).
9

‘With the aid of Green's formula it can be shown that our problem with single-sided inequalities is equivalent
to the variation inequality
Ww*, v — w*) = Lo — w¥), Vo = U,

It is known [6] that a solution of this inequality exists and is unique in H! ).

The problem of entry of a blunt body into a liquid can also be formulated as a variation inequality, but
the question of existence and uniqueness of its solution is not then trivial, since the form w, v) for unlimited

regions is not coercive.

6. The flow asymptote constructed above loses meaning in some immediate vicinity of the line 8=46,¢),
p =ay the size of which is of the order of t as t —0. Inthis vicinity the pressure and velocity are infinite, and
a significant role is played by the compressibility, viscosity, and surface tension of the liquid. Thus, within
this region it is necessary to construct an "internal expansion,® which describes the flow fine structure only
near the contact line.

Of special interest in the problem of droplet collision are the pressure value on the contact spot, the
point of application of maximum loading, and the duration of this action. The basic studies of this question
(see review [7]) employ the model of an ideal compressible liquid, with neglect of surface tension and external
mass forces. The model of an ideal incompressible liquid was used in [8] for numerical calculation of the
central collision of two droplets in the absence of mass forces. As t—0 the accuracy of the numerical cal-
culations decreases significantly, so that an analytical study of the initial collision stage which determines the
entire "history® of the motion is of great importance. Compressibility must be considered only at the very
first moment of time [9, 10], before the compression wave front has departed beyond the limits of the contact
spot. This stage of droplet collision with a solid plane was studied in [11].

We will now calculate the Weber number W =a-yv2/cr, Froudenumber Fr=v?/ag, Reynolds aumber Re =
av/v and Mach number M =v/c for this process, where a is the droplet radius, v is the liquid density, v is
the collision velocity, o is the surface tension coefficient, g is the acceleration of gravity, v is the kinematic
viscosity coefficient, and ¢ is the speed of sound in the liquid. At @=3:10"% m, v=100 m/sec, v =107% m?/sec,
¢=1500 m/sec, 0=72.58 1072 J /m?, » =103 kg/m?, g=9.81 m/sec? we obtain W, Fr ~10%, Re ~105, M ~1072,

Thus, in this velocity range it can be expected that the forces of viscosity, surface tension, and gravity
have an insignificant effect on the collision process, while the compressibility of the liquid can be neglected
after the compression wave passes onto the droplet free surface.

632



The author expresses his gratidude to V. V. Pukhnachev for his formulation of the problem and constant
interest in the study. The author also thanks L. K. Antanovskii and O. M. Lavrent'ev for evaluation of the re~
sults and criticism.

LITERATURE CITED

1. H. Wagner, "Uber Stoss- und Gleitvorgange an der Oberfliche von Fliissigkeiten,® Z. Angew. Math, Mech.,
12, No. 4 (1932).

2, V. V. Pukhnachev, "Linear approximation in the problem of blunt body entry into water,” in: Dynamics
of a Continuous Medium [in Russian], No. 38, Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk
(1979).

3. V. I Nalimov and V. V. Pikhnachev, Nonstationary Motions of an Ideal Liquid with a Free Surface [in
Russian], Novosibirsk (1975).

4, Ya. S. Uflyand, The Paired Equation Method in Mathematical Physics Problems [in Russian], Leningrad

1977).

5. N, V. Kochin, 1. A. Kibel, and N. V. Roze, Theoretical Hydromechanics [in Russian], Part I, Moscow
(19623).

6. J. L. Lyons, Optimum Control of Systems Described by Partial Derivatives [Russian translation}, Moscow
(1972},

7. A. L. Gonor and V. Ya. Yakovlev, "Some results concerning the theory of droplet collision on a solid
surface,” in: Jet and Detached Flows [in Russian], Izd. Inst. Mekh, Mosk, Gos. Univ., Moscow (1979).

8. V. E. Petrenko, "™Methods for calculation of flows of viscous incompressible liquids with high deforma-
tions,?® in: Oscillations of Liquid-Filled Elastic Constructions [in Russian], Novosibirsk (1973).

9. V. A. Eroshin, N. I, Romanenkov, et al., "Hydrodynamic forces upon colligion of blunt bodies with a com-
pressible liquid surfz}ce," Izv. Akad. Nauk SSSR, Mekh, Zhidk, Gaza (1980).

10. A. G. Gorshkov and E. I. Grigolyuk, "The problem of collision of elastic shells of rotation with an in-
compressible liquid,™ in: Oscillations of Liquid-Filled Elastic Congtructions [in Russian], Novosibirsk
(1973).

11. G. J. Heymann, "High-speed impact between a liquid drop and a solid surface,® J. Appl. Phys., 40, No.
18 (1969).

DEVELOPMENT OF INITIAL PERTURBATIONS
OF THE EXTERNAL BOUNDARY OF AN EXPANDING
GAS -~ LIQUID RING

S. V. Stebnovskii UDC 532,529

In studies of surface phenomena related to underwater explosions, in particular, in studying the process
of splash dome formation, the development of perturbations in the initial stage of free surface motion is of
interest. A convenient model to use in such studies is that of the flow occurring upon explosion of a cylindrical
charge in a cylindrical liquid ring, where the free surface form coincides with that of the charge. The stability
of an expanding liquid ring has been considered in a2 number of studies. '

Thus, assuming an ideal incompressible liquid, [1] considered the stability of initial perturbations of a
thin liquid ring expanding inertially. Tt was shown that in the general case such motion is unstable; introduction
of surface tension has a stabilizing effect on harmonics. But in the case where the liquid motion takes place
under the stimulus of impulse loading, commencement of liquid motion is preceded by exit of a shock wave
onto the liquid surface, as a result of which the reflected unloading wave destroys the continuity of the liquid
medium. Thus in this case the validity of using stability estimates obtained in problems concerning expansion
of a continuous liquid ring is questionable.

The present study is an experimental investigation of the development of initial perturbations on the ex~
ternal surface of an expanding gas—liquid ring. Such a flow was realized in the following manner. Along the
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